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Abstract. The homologyof the Lie algebra of algebraicvectorfields in thecom-
plex line with trivial 3let at thepoint 0 withthecoefficientsin irreduciblehighest
weight representationsof the Virasoro Lie algebra is calculated.The sameis done
for vectorfields with trivial 1 jets at two distinguishedpoints. The classof quasi-
finite representationsof the Virasoro Lie algebra naturally arises which is the
substitutefor theclass offinite-dimensionalrepresentations.Thesimilar resultsfor
Kac-MoodyLie algebrasare given as well as someconjecturesandannouncements.

INTRODUCTION

The Kac-Moody Lie algebrasare definedby meansof the constructionwhich
generalizesdirectly that of finite-dimensionalsemisimpleLie algebras.Corre-
spondingly,many resultsof the representationstheory of the Kac-Moody alge-

brasare generalizationsof similar resultsfrom the finite-dimensionalrepresenta-
tion theory. In particular,for any Kac-Moody algebrag with a specified Cartan
decomposition~ = 11 e ~‘ ~ + the categoryof highestweight representations
may be defined;it is usually called the category ~9- The representationsfrom

the categoryL!) arelocally finite-dimensionalwith respectto n. In the category
t12 a semisimplesubcategory.)1’~is distinguished;the latteris generatedby irredu-

cible representationswith (regular) integral dominant highest weight. If ~ is
a finite-dimensionalsemisimple Lie algebra then .Ir is precisely the category
of finite-dimensionalrepresentationsof ~ . In generalcaseirreduciblerepresen-
tations from irare similar in many respectsto finite-dimensionalrepresentations
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of semisimple Lie algebras;in particular, they posessthe Bernstein-Gelfand-

Gelfand resolution, and the Weyl-Kac characterformulais valid for them. They

also can be realizedin the spacesof sectionsof invertible sheavesover the flag
manifolds.

We study in this paperan analogyfor the categoryir in the representation

theory of the Virasoro Lie algebraVir. The latter is the centralextensionof the
Lie algebra of vector fields on the circle; it admitsa Cartan decomposition
Vir = £f ~j ~ (cf. Section 1), and the dimensionof the Cartan subal-

gebra ir is equalto 2. The category(9 of representationsof Vir, Verma modules
and so on can be defined without difficulties. But thereis no evident analogy
to integral dominant weights. Neverthelessone can indicate in the category
(9 a classof representationsof Vir which bearsomeresemblanceto finite-dimen-

sional ones. To do this we recall some propertiesof integral dominanthighest
weightrepresentationsof Kac-Moody algebras.

The first propertyis that sucha representationM is alwaysa “top” one.This
meansthat if M is a compositionfactor of some module N from the category
(9, thenN projects onto M. Moreover, let M be an irreducible module from

irand ir (M) is the minimal subcategoryof (9 which containsM and such

that (9 is decomposedinto the disjoint sum ir(M) ft (9’; then there exists a
category isomorphismir(l) -+ .)r(M), where 1 is a trivial one-dimensionalre-
presentation.

The secondpropertyis thatM is the quotientof the Verma moduleover the
submodulegeneratedby 1 singular vectorswhere 1 is the rank of the algebra.

And the third propertyis that the singularcarrier of M is 0.
Various argumentssuggestone more property. Namely, for any M fromi(

the spaceH
0 ( u ; M), that is the co-invariant spaceM/ Ii M, is finite-dimensional

for any subalgebrau of g with dim(g /( u + ii )) <oo moreover;this property
implies M belonging to .ir. Theseassertionsare proved only partially. In parti-
cular, in Section4 of this paper we prove thatH0(~~ + ];M) is finite-dimen-

sional for any M from ir; a weakenedversion of inversestatementis also proved
there.

According to this, we call a Vir-module M from the category (P quasi-finite
if H0~ , ~ 1; M), that is H0 (~‘~ ; M), is finite-dimensional.It turns out that
this property of M is equivalent, in the irreducible case,to the union of the
analogsof the first andsecondpropertiesabove.

The highest weights of quasi-finite representationsof Vir are given by the

formulas

— q)
2

c=c =1—
p,q pq
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(mq — np)
2 — (q — p)2

h=hm.n= 4pq

where (p. q) = 1, 0 (rn <p, 0 <n <q. Theseformulas haveoccured for the
first time in the work [2], where for each c = cp,q a conformal field theory

was constructedwith hm ,~beingthe dimensionsof particlesinvolved.
In this paper we calculate the homology of different subalgebrasof Vira-

soro and Kac-Moody algebras with the coefficients in quasi-finite represen-

tations. Section 1 containsan amount of generaltheory. The homology of the
Lie algebra 2’3 = [ -~ ~ with the coefficientsin quasi-finite representa-
tions of Vir are calculatedin Section 2. The Lie algebra~ is deformed(inside
Vir) into the Lie algebras£f

1 of vector fields in the line which vanish at two
given points with the first derivative. In Section 3 we calculate the homology

of ~ with the coefficientsin quasi-finite modulesand note that the dimen-

sions of thesehomology does not changeunderthe deformation£f3 -+ 2~ ~

The result concerning the 0-dimensionalhomology of ~ may be interpre-

ted as the rule of fusion of particlesin the conformal theory. Thus we obtain
a proof of theserules.The basic argumentsin thesetwo Sectionsrely on the
information on singularvectorsin Verma modulesobtainedin [4].

The last Section 5 containsalmost no proofs. Some definitions and results

from the forthcoming article of A. Beilinson and B. Feigi.n [1] are represented
here. For a fixed c = c~, q we define a free Abeian groupA~generatedby
irreducible quasi-finite representationswith thisc. Weintroduceaninnerproduct

on A~with respect to which irreducible representationsform an orthonormal
base. Thereis also a commutativealgebrastructureon A~.The fusion of two
particles into one may be interpreted as the multiplication operation in
and the creation of a pair of particlesfrom one as the dual comultiplication
operation.The result of Section 3 on the homology of the algebra£~‘~ may
be stated as follows. Let L be an irreducible quasi-finitemodule.The comulti-

plication operationassignsto L a quasi-finite representationT of Vir e Vir.
The Lie algebra£°~ is embeddedinto Vir e Vir, ard the spacesH~(2~~ L)

and H*( ~2 .1 IL) turn out to be dual to each other. In Section 5 this result
is generalizedto the casewhen~ is replacedwith the Lie algebraof vector
fields in the line which vanish with the first derivativein the pointsof a given

finite set. Some results on co-invariants (that is on 0-dimensionalhomology)

of the Lie algebrasof vector fields on non-singularaffine curves with the coef-
ficients in quasi-finite modulesare also containedin Section 5. In the end of
this Section we state some similar results for the Kac-Moody algebra si

This paper is a product of fusion of two mathematicaltheories: the repre-

sentation theory arrangedin the category (P and the theory of homology of
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infinite-dimensionalLie algebras.Both of thesetheorieshaveoriginatedfrom the
works of I.M. Gelfand,and we expressour deepgratitudeto him. Weare grateful

to A. Beilinsonfor someusefuldiscussions.

1. VERMA MODULES, IRREDUCIBLE MODULES, AND QUASI FINITE

MODULES OVER THE VIRASORO ALGEBRA

The following notations and terminology are accepted in this article. The

Virasoro algebra Vir is the complex Lie algebraspannedby e
1 (I E Z) and z

with the commutatorrelations [e1, z] = 0, [e., e1] = (/ — i)e1~1for i + / � 0,

[e~~ e1] = 2ie0 + 1/12 (i
3 — i)z. The symbol q’~ (i ~ 0) denotesthe subal-

gebra of Vir spannedby ~ e+(f+ 1 We write also ~ instead~

By VhC we denote the Verma module over Vir, that is the module with one

generatorv = Vhc E VhC which generatesVhc freely over2~ C Vir and sa-

tisfies therelationse
0 v = hv, ZU = cv, and v = 0.

The following is known about the structure of Verma modules VhC (cf.

[5]). For any h, c, h’, c’ there exists at most one (up to a non-zeromultiple)

non-trivial Vir-honiomorphism Vhc —~ Vh,C, no such homomorphism exists

if c’ ~ c. The homomorphismVh ,~ Vhc exists in the casewhen for some

positive integersrn, n

Ii’ = h + inn

and h, c satisfythe “Kac equation”

(1) 12 + — (in
2 — I) + — (inn —1) Ii + — (n2 — I) +

24 2 24
~‘ 22

1 (n —in )
+—(nn--l) + =0

2 16
All homomorphismskh~ -÷ Vhc are the compositionsof thesehomomor-

phisms.

The curve(1) in the plane ff2(h, c) is defined as well by theparametricequa-

tions

1 —nt2 1 —inn 1 —n2
12= t+ +

4 2 4

c = 6t + 13 + 6t’.

Forh’, Ii, c undertheseconditions the homomorphism17h ,~ ÷ ,~is denoted

by “0m (t). Wenorm it by

~m,n(t)0h,c~r’1 Uhc+...
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with”.. .“ belongingto +k ~
2ekVh ,~• Clearly

0m n(t)(vh ~)= Omn(t)Vhc~

where crmn(t) = e~’2 + . . . E U(2’
1) completely determinesSOm ~(t). The

vector w = p,,~,~(t)(vh ~ E VhC is a “singular vectorof weight (h’, c)”; this

meanthat w ~ 0, e0w = h’v, zw = cw, and2’ -i (w) = 0.
We see that Gmn(t) is a polynomial in e1, e2, . . . with the coefficientsbeing

functions in t (actually polynomials in t, t ~). No explicit formulas for these
polynomials are known, but there exist some partial results on them. These

will be statedandusedbelow.

For any c all the (proportionality classesof) homomorphismsVh~ ~ -~ Vh .~

composesomedisjoint diagramsof the following 5 forms:

(1) .~—.

(2.) . 4— . *—s 4.— .

. 4... • ~

(3) .~ ~

(4) and (5) are obtained from (2) and (3) by reversing the arrows. Diagrams

of the forms(2), (3) ariseonly for

—

c=c =1—
p,q pq

where p. q are positive integersprime to each other; in particular, they can
arise only for rational c ~ 1. Diagram of the forms (4), (5) ariseonly for c =

= c;q = 26— cpq~in particularonly for rationalc~25.

For given p. q diagramsof the form (3) with c = Cp,q correspondto the pairs

of positive integersm, n with 0 < in <p, 0 < n < q, the samediagramcor-
respondsto different pairs (m, n) and (in’, n’) if and only if rn + in’ = p, n +

+ n’ = q. The diagram correspondingto the pair (m, n) is shownschematically
in Fig. 1. The heavy dots representVerma modules. Namely, the top dot re-

presentsthemodule VhC withc = Cpq

(np — mq)
2 — (p —

h=h = ____________m ,n
4pq

The other dots representthe modulesVhC with c = Cpq~h = hmn + N,

where N is the sum of the productsof pairs of numbersalong the way from
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S

\\
\.~‘7

N)
S

S
‘ ~0 ~<‘INN

l.~

S~t<~~c~~L-3 N N

S

>~(~// ~i1~&-3 c’J

/7,

• S N

V 4~

-3~ ~T.V
S

Fig. 1

the dot consideredto the top dot. An easy calculation shows that the valuesof

h for the dots of our diagramsare the numbershm ~, with the following pairs

(in’, n’) :(p + m, q — n) and (2p — in, n) for the two dots next to the top one;

(2p + in, n), (3p — in, q — n) for the next two dots, andso on; in other words,

thesearethepairs indicatedin Fig. I at thevertical arrows.

The arrows in Fig. 1 representthe homomorphisms~ (t), where i, / are the

numberswritten at the arrows, and t ~r — q/p. (For betterunderstandingFig. 1

it is appropriateto havein mind that p11(t) = ~o1~(t 1)

Note that the maximal diagramsof form (5) look almost the same:one has
only to reverse the arrows (without changing the attachedpairs of numbers)

andtakefor t thevalue+ q/p insteadof — q/p.

Denote by MhC the maximal submoduleof not including
0hc’ and set
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= VhC/MhC. It is known (and evident) that LhC is an irreducible Vir-
module with the highestweight vector, and that any such module is of the form

LhC. Moreover, MhC is the sum of the imagesof all non-zerohomomorphisms

Vhc -+ VhC (cf. [5]), and therefore what was said above implies that MhC

is either 0 or is generated(over Vir aswell as ove~~ by oneor two singular

vectors.

DEFINITION. An irreducible module LhC is called quasi-finite, if (i) MhC ~

generated in VhC by two singular vectors (is not generated by one singular

vector); (ii) VhC cannot be embeddedin anotherVerrnamoduleasa propersub-

module. U

In view of the above considerationswe have: quasi-finite modulesare preci-

sely those of the form Lh ~ q with Cpq and hmn as above,(p, q) = 1,
0< in <p, 0< n <p. With the’ exceptionof themodule L

00 = ~ (occuring

when p = 3, q = 2, in = n = 1) all the modulesLhC areinfinite-dimensional.

The term “quasi-finite” is motivatedby the following conjecture.

CONJECTURE 1.1. The following two properties of the module LhC are equi-

valent.

(i) Lh,~is quasi-finite.

(ii) For any subalgebrau of Vir with dim(Vir/( u + 2 ~j )) < cc the co-inva-

riant spaceLhC/ u LhC is finite-dimensional. •

The implication (ii) =~‘ (i) will be proved in Section 2. Moreover, we shall
prove that the quasi-finitenessof Lh,~is equivalentto the finite-dimensionality

of ~ LhC. The other results of this kind are containedin Section 5.

2. COMPUTING H~(23LhC)

Thefollowing is the main tool of the computation.

PROPOSITION2.1. (cf. [4]).Let

IT : U(21)-÷cJ~[e1,e2}

be the projection of the algebra U(21) onto its quotient over the two-sided

idealgeneratedby e3.Set

Qm,n(t)~ +amn(t)e2,

wherec~mn(t)=m
2t+2mn+n2t’~. Then
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= 1~~1 Q~1— 2u,1— 1—
2~(t).

0 cu< k
0< v’(l

REMARKS 1. Since Qm,n(t) = Qm,_nhlt), then in the right hand side of the

last formula each factor occurs twice, with the possibleexceptionof Q00 = e~.

Hence the square root from the right hand side can be extractedexplicitly.

2. If t = — q/p, which correspondsto c = cpq~then

amn(t) = (Cpq — I — 24h)/6.

The expressionc — 1 — 24 h is of great importancein the representation
theory of the Virasoro algebra;in particular,the line c — I — 24 h = 0 is a com-
montangentto all the secondorder curvesdeterminedby the Kac equations.

Since Verma modulesare free over 2~, the resultsof Section 1 yield for

the 2~ -moduleLh ,~a free resolutionof oneof the forms

O+-LhC+-V4-...+-V+-0

0 ~— Lh C ~ V ~— V ~— V ~-...

4- V4- Va V+-. ..~— Va V4- V+-0

~

(comparethe diagrams(1) — (5) in Section 1), where V denotesthe free

module with one generator,and the arrows (besidestwo left onesin eachrow)
are the homomorphisms‘~m ~(t) or their sums(with appropriatesigns). These
resolutionsare free

2
3-resolutionsas well. Hence the homology of the Lie

algebra23 with the coefficients in Lh ,C may be calculated(as if [e1, e2 ]-mo-
dules)as the homologyof oneof complexes

0

P4.-...

P4-0

POP4-...

whereP = if [e1, e2], and the arrows denote P-linear mappings with matrix

entries~r(ok1(t)) (seeProposition2.1).

This homology is easyto find. To do this we put (for p, q, in, n fixed) for
integersa, b, c, d suchthata b mod2, c d mod2
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R{a, b; c, d} (t) = 1.1 Q~(t)
a<a<b,a~a—1mod 2
c<~<d,p~C—1mod 2

and set

A
2~= R{2ip — m, 2~+ rn, — n, n},

A21÷1=R{2ip+m,(2i+2)p—m;—n,n};

B21=R~(2i—l)p+rn, (2i+l)p—m;—q+n,q—n},

B2~÷1=R{(2i+l)p—rn,(2i+l)p+m;—q+n,q—n};

C2, = R{—in, m; 2ip — n, 2iq + n~,

= R(— m, m; 2iq + n, (2i + 2) q —

D21=R{—p+ m;(2i— l)q+n,(2i+ l)q—n},

D21~1=R{—p+rn,p—m;(2i+l)q—n,(2i+1)q+n}.

Thus all A, B, C, D are polynomial s in e1, e2 with coefficientsbeing func-
tions of t. Remark that A0 = C0 and B0 = and that the squareroot may

be extractedfrom thesetwo polynomials, that is A0 = a~andB0 = b~(com-
pareRemark1 to Proposition2.1).

We areinterestedin the caset = — q/p (andalsot = q/p). Remarkthat

~cs,p (~~~)=Qcs+p,~q( ±

This equality,togetherwith A0~(t)= Q_0,_~(t),implies the following result.

LEMMA. If t = ±q/p, then

C21=A21, C2~÷1~

All other pairs of polynomials A, B, C, D with t = —q/p are prime to each other,
and the same is true for t rerq/p U

(The lastassertionis evident,for all our polynomialsaredecomposedinto the

factors of the form e~+ ae2, and one has only to comparethe setsof a’s in-

volved. By theway, it is important thatp andq cannotbe botheven).
The results of Section 1 and the previousLemma show that the homology

of the Lie algebra 23 with the coefficients in the moduleLhC is calculated
as the homology of the complex exhibitedat Fig. 2 (whereP denotesif[e1, e2]

anda0, b0, A,, B. denotea0(—q/p), b0(—q/p),A1(—q/p), B1(—q/p),andarrow
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p/\p .P

Fig.2

labelled with a polynomial denote the ~ multiplication by this polynomial).

A very simplecalculationleadsto the following result.

THEOREM 2.2.As a if [e
1, e2 ]-module
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H(2;LC hr p,q’ ?n,n

= if[e
1, e2]/(a0A2 .. . A~, b0B2 . . . B~) forr = 2k,

if[e1, e2]/(A1A3 . . ~ B1B3 . . .B2k+l) for r=2k + 1.

It is seenfrom this result that all the homologiesof Theorem2.2 are finite-
dimensional.It is easyto find their dimensions,the resultsis as follows.

COROLLARY 2.3.

mn(p — m)(q— n)
dimH(

2
3Lh C )=(r+l)

2T m,n’ p,q 2

(In the caseof trivial one-dimensionalmoduleL
00 corresponding to p = 3,

q = 2, m = n = I, this assertionis well known, cf. [6])
If the moduleLhC entersa diagram of the form (3) but is not its vertex,

then the homology !I~(23;LhC) is calculated with the use of the complex

which may be obtained from Fig. 2 by an appropriatetruncation: one takes
a non-top P and preservesall the arrows which lead to this P. It is easyto see
that the polynomials attachedto the two arrows directed to any non-top P
have a non-trivial common factor; therefore dim H0(23 LhC) = cc. In the

rest homology remainsunchanged(in particular,it remainsfinite-dimensional):
if VhC entersthe s-th term of the resolution of a quasi-finite moduleLhC

thenfor r> 0

HT(
2

3LhC)=HT+S(
2~LhC).

Consideringall possiblecaseswe seethat for all other casesthe homology,

and in particular,0-dimensionalhomology, is infinite-dimensional.For example,
if VhC enters a diagram of the form (5) then the complex for computing

H ~/.2’3; LhC) can be obtainedfrom the complex on Fig. 2 by removinga non-
top P and all the arrows which lead to this F; the homology will be infinite-
dimensionalin two dimensions, including 0. Since 0-dimensionalhomology is

the co-invariantspace,weobtain theassertionwhich was mentionedin Section1:

COROLLARY 2.4. The space of 2
3-co-invariantsof the moduleLhC is finite-

dimensionalif and only if the moduleLhC is quasi-finite. .

This Corollary motivates the following extension of the notion of quasi-
finite module.

DEFINITION. A category (9 Vir-module M is called quasi-finite if dim
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H
0(51’3M)<oo.

THEOREM 2.5. A category (P moduleM is quasi-finiteif and only if it isafinite

sum of quasi-finite irreducible modules.

Proof. Let IW° be the contragradientmodule for M. Then M° may have only
a finite numberof singularvectors(becausedimH0 (2~; M) < dim H0 (23 ;M) <
< cc). Let v be one of them (modulesfrom (P necessarilyhavesingularvectors),

andlet L be a submoduleof M° generatedby v. This is a quotientof a Verma
module. Since the number of singular vectorsin L is finite, L hasa minimal

submoduleS; clearly, S is irreducible.The module S = g
0 is a quotientof M,

hencedim H
0 (23; S) < cc, and S is quasi-finite, in particulardimH1 (23 ; S) < cc•

Let S = M/M1 - From the exactsequence

H1(23S)-+H0(23M1)--*H0(5t3M)

we seethat dim H0(23 M1.) < cc . Thus the previousargumentsare applicable

to M1. In the sametime M~ has less singularvectorsthanM
0 thereforeweob-

tain a finite procedureproducinga filtration

0 =MN C... CM
2 CM1 C M0 =M

with irreducible quasi-finite subsequentquotientsM1/M1÷~. Now to finish the

proofwe haveonly to provethefollowing

LEMMA Let 5, 5’ be irreducible quasi-finite modules. Then Ext~(S, .5’) = 0

Proof We haveExt
1 (5, S’) =H’ (Vir, if e

0 S~*®S’). To calculatethis cohomolo-

gy we tensorthe BGG resolutionfor 5’ and the dual BGG resolutionfor S. We
get a spectral sequencewhose initial term is the sum of cohomologiesof the
form HT(Vir, ife0 (V~°C~ a V,,, C~ which is non-trivial only for h’ = h and
r = 0. This implies that H

T(Vir, if e
0 S~a S’) may be non-trivial only for r

even(and 5’ = 5). QED .•

REMARK. For an irreducible representationL of Vir we denoteby.~#La class

of such irreducibleP that Ext’(P, L) ~ 0 for some i. Then denoteby .l(L the

categoryof representationsof Vir with all irreduciblecompositionfactorsbelong-
ing to One can easily deducefrom above that is isomorphic to

if andonly if L is quasi-finite.
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3. COMPUTINGH*(211LhC)

The Virasoro algebraVir can be naturally interpretedasthe centralextension

of the Lie algebra of meromorphicvector fields in the line of the form z N
p(z) d/dz, where N is an integerandp is a polynomial. In this interpretation

is the Lie algebraof vector fields of the form z~’+ 1 p(z) d/dz. We define
as the Lie algebra of vectorfields of the form z

2(z — 1)2 d/dz. This Lie

algebrais obtainedfrom 23 by a deformationinside2’~.We show in this Sec-
tion that the homology with the coefficients in LhC doesnot changeunder
this deformation.

THEOREM

We makethis statementmore precise.The Lie algebra2’~ is a codimension

2 ideal in the Lie algebra ~ of vector fields of the form z(z — l)p(z) d/dz

(which is, in turn, a deformationof 2’~).The quotient2’~~/2~is generated

by the vector fields e~= z(z — 1)2 d/dz and e~= z2(z — I) d/dz, andthese
vector fields define a pair of commuting operatorsin H~(£~~ Lb ~ Thus

H~(2’
11 Lb C~’ as well asH4.(

2
3LhC), is a module overthe algebraof poly-

nomials in two variables,but thereis an essentialdifference betweenthe two

modules; the operatorse~, e~ in H~(~ ~ LhC) are diagonizable,while the

operatorse1, e2 inH~(
2

3LhC) are (virtually) nilpotent.
Describethe situationfor a quasi-finiteLhC in moredetails.

THEOREM 3.2. The operators e~, eg in Hr (2’~ ~ Lb ,C ~ have simple
spectra; all the eigenvaluesare of the form hm ~ (for ~ p,q), but not
necessarily withO.(m ‘.<p,O<n’<q.

The results of this Section contain a complete description of the spectra

of e~,e~.Now we give the precisestatementonly for the 0-dimensionalhomo-
logy, that is for the co-invariants.

An orderedtriple of pairsof integers(m, n), (in’, n’), (rn”, n”) is calledadmis-

sibleif0<m<p,0<m’<p,O<m”<p,O<n<q,O<n’<q,O<n”<q,
p <m + rn’ + m” <

2p, q <n + n’ + n” < 2p, andthe sumsm + m’ + m”,

n + n’ + n” are odd.

THEOREM 3.3. Let {(m, n), (me, n
1-), (rn7, n~) I = I N} be the set of all

admissible triples with the fixedfirst pair (m, n). ThenH0( ~ , ~ L hm ~, Cp c

can be decomposedinto thesum of N one-dimensionalspaces,such thzt in ihe

i-th one of these spaces e~and e~coincide with the multiplication by hm ~,n1

andh
m ~,n
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Now we turn to the proofs.

Using the notations ek = ~ +1 d/dz we have e~= e
2 — 2e1 + e0 and

= e2 — e1 - The Lie algebra .2~j 1 is generatedby thevector fieldse3 — 2e2 +
+ e1, e4 — 2e3 + e2, . . . Evidently [e~, eg] E 51~~. Verma modulesVh ,C are

free not only over -~°~ but also over ~ ,~and, certainly, over£f~~. Hence

the resolutions of the modules Lh ,~ constructed in Section 1 are
2’l -free

resolutions as well, and the homology H~(~ ;L h,c~is just the homology

of corresponding~ -co-invariants complexes.The ~ -co-invariantsspace

in the Verma module Vh ,~ is a free module with one generatorover the ring
if [e~, e~],so thecomplexes look quite Like the complexesfrom Section2, only

withP beingnot if[e
1, e2] but if[e~, eg].

The differentials of our co-invariantcomplexare composedfrom the mappings

P -+ P obtainedfrom the inclusions V,, ~ -÷ Vj,, ~ by passingto co-invariants.

This mapping is nothing but the multiplication ‘by the polynomial in e~,eg

which is the projection of the operator
0k

1(t), determiningthe singularvector

of the module V,,, ,C (theimageof
0h~) onto if [e~ egi.

This projection hasbeenactually found in the paper [4]. Namely, this paper

contains explicit formulas describingthe action of the operators0k
1(t) in the

modules of polynomial tensordensitieson the circle. More exactly, ~

hasa if-basej~.(j E Z), and the action of Vir in is given by the formulas
e~fi= (p +j — X(i + l))J~÷~~zJ = 0.In particular, a~i(t)fo = P(X, p, k, 1, t)

fkr In [4] an explicit formula forP(X, p, k, 1, t) is given:

P(~p, k, I, t) = [J RkIUV(t; X, ~),

0<u< k
0<v<l

Rk1UV(t; X, JI) = (ii — 2X)
2 +

+(p —2X)[(2u(k —1 —u)+k— l)t+kl—(k— 1—2u)(l— 1 —2v)— 1 +

-1- (2v(l— 1 — v) + 1— 1)t’]—

— X[(k — 1 —2u)2t + 2(k — 1 — 2u)(l — 1 — 2v) + (I — 1 —2 0)2 t 1] +

(Ut + v)((u + 1) t + (v + 1 ))((k — u) t + (1 — v))((k — I — u)t + (1 —1 — v))

+

Our situation is related to the modules.~ in the following way. Consider
in the 51~1 -co-invariantsspaceof the module Vh,C the eigenspaceof theopera-

tors e~,e~1correspondingto the eigenvaluesa and jl. Let F be a functionalon
this space;it may be regardedas a sequenceof functionals F, : (V/IC)f —~

(the last subscript/ correspondsto the naturalgrading in V,, ,C~- The functional
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F must satisfy the conditionse~F = aF, egF = j3F, (e3 — 2e2 + e1) F = 0,

(e4 — 2e3 + e2) F = 0 theseconditionsare evidentlyequivalentto the

condition

e.F,~. =(h +j—a+i/3)F1,

that is e1F1~1=(~+/ — X(i+ 1))F withp = h —/3—a, X=—(3.
In particular, our reduced co-invariant space is one-dimensional,and our

mapping restricted to these spaceis the multiplication by a number (which

is the value of the polynomial in e~,eg to be find for e~= üç e~~ /3). Let us
find this number taking for the base elementof our dual co-invariant space

the functional F normed by the condition F(v) = 1. Our mapping V,, ‘,~ —~

-+ Vh ,C takes v’ =

0h ‘,C into 0k ,(t) v. Hence the adjoint mappingstakes the
functionalF into the functionalF’ whosevalueat the point u’ is

F’(v’) = F(ak
1(t)v) = P(X, p, k, 1, t) F(v) = F(X, ~i, k, 1, t).

Having this in mind we can easily calculatethe homologyof the Lie algebra

with the coefficientsin any moduleL,,~.We considerin detailsonly the

mostinterestingcaseof quasi-finitemoduleLh
m ,n,Cp,q

Set

X=_e’~,J1=hmn_e’o_e~,

P(X, ,u, m, n, t) becomesthe squareroot from

II ~ eg),
0 <U < m
0< v< fl

where

Rmm;up(e~, e~)= (e~ —

[(m—2u—l)q—(n—2v— l)p]
2

— (e~+eg)+
2pq

+hm_

2U,fl_2vhfl_2(U+l),n_2(v+l)~

Notice that the equationRm flu ~ ~ = 0 definesa parabolain the plane
(~. ~). and that the parabolasRmn;uv(E~ ri) = 0 and R~, ~ ~ n) = 0

havetwo commonpoints;
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m+m’ , n+n’ ‘ m — m’ , n—n’

2 — (u+U +1), —i—— — (v+v +1) 2 — ~ ~v+v

and the point which is obtainedfrom the indicatedoneby the permutationof

the coordinates.(The subscriptsmay fail to be integrals,but actually hab de-
pendsonly on qa — pb which is anintegerin all casesconsideredbelow).

Our co-invariant complex is arrangedas follows. One should take Fig. 1,
replaceeachdot with the letterP (having in mind that P = U [e~, en”]) andregar-

ded an arrow with the numbersa, b attachedas the multiplication by the poly-

nomial 11 R b-u ~ Now we are able to find the if1e~,e~]-modulesHr
0<u<a
0 <v<b

Lh C ~ Thefinal result is asfollows.m,n. p,q

ThespaceH (2’ 1 L,, ) hasdimension
T 1, m,n~Cp,q

(r + l)2mn(p — m)(q — n)

2

and decomposesinto the sum of one-dimensionaleigenspacesof e~and

The eigenvalues are the coordinatesof the intersectionpoints of parabolas;

For r = 2s

R2sp+mfl;uv(~~ ~i) = 0

and

R~— m ,(2s+ 1)q — n;u ~ 17) = 0

(xp ‘~ u <xp + in, x = 0, 1,... , 2s, 0 ~ v <n;o ~<u’ <p — m, yq ~ v’ <

<(y + 1)q —n,y =0,1,... ,2s);
for r = 2s + 1

R(2s+1)p+m.q_n;u,v(~~~)=O

and

Rp_m,(2s+1)q+fl,u~.v~(~~17) = 0

(xp<u<xp+mx=0,l,...,2s+l,0~v<q—n;0<u<p—m,yq<

~ v’ <yq + n~y = 0, 1 2s+ 1).
(Each of the above families of parabolasinvolve each parabolatwice; the

coordinates of the intersectionpoints of the parabolasare indicated above).
To finish this Section we considerthe limit pass which convertsthe homo-

logy of the Lie algebra2’ 1 into that of the Lie algebra513. The Lie algebra
2 may be realized as the Lie algebra of vector fields of the form z2 (z —
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— e)
2p(z)d/dz,where 0 � e E if. When e = 0 this Lie algebrabecomes513.

The previous calculation changesa little under this interpretation.Namely,

now we havee~= e
2 — 2ee1 + e

2e
0,eg = e2 — ee1,and2’~~ is generated

by the fields e3 — 2ee2 + �2e1, e4 — 2ee3 + �2e2 theformulafor e,F,+1

takesthe form

e1F1÷1= [(1/3—a) ~i2 + (h +j)e’]F1,

that is

F~. [1/3—a 1 F. F.

e. —-—i- =~ ~2 ~ =(p+f—X(i+1)) —4-
where

a+j3 /3
p=h— 2 ‘

C C

Themapping

if[e~,eg] -+if[e~,e~]

which is the quotientof the mapping ~ ~.C -+ Vh ,~corresponding to the singular

vector ak,(t)v E VhC is the multiplication by the polynomial obtainedfrom
P(X, p. k, 1, t) by thesubsitution

e~+e~’
2 ‘

C C

and the multiplication by ~1d This snggeststhat tha formuls for (ak,(t)) from
Section 2 must be obtainedin the limit from the formula for P(X, p. k, 1, t);

andreally

e —ee 2e —3ee
lime

2R t;— 2 1 — 2 1 =
m,n;u,u ‘ �2

= e~+ [(k — 1 — 2u)2t + 2(k — I — 2u)(l — I — 20)2] e
2 =

= ~k— 1— 2u, 1— 1— 20(t)

(seeSection2).

4. THE HOMOLOGY OF NILPOTENT SUBALGEBRAS OF THE KAC-MOODY
ALGEBRAS

For the generalinformation on Kac-Moody Lie algebrassee Kac’s book [7].
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It is generally acceptedthat a proper analog of a finite-dimensionalrepre-
sentationof a semisimpleLie algebra in the Kac-Moody theory is a representa-
tion with a (regular) integral dominant highest weight. And it is exactly this

class of modulesfor which the results similar to thoseof Section 2 are valid.
The role of 23 plays the commutant[n ~ ~ of the nilpotent Lie algebra

+ from theCartandecompositionof theKac-Moody algebrag.

THEOREM 4.1. Let g be a Kac-Moody Lie algebra with a symmetrizableCartan

matrix, and let L~be an irreducible ~ -modulewith a regular integral dominant

highest weightX = (X1,..., X1), where 1 = rank ~. Then dim H0([ n÷, n + ]; L~)=

Proof It is known that L~hasa Bernstein-Gelfand-Gelfandresolutioncomposed

of Verma moduleslabelled with the elementsof the Weyl group (see[12]). The

space of [n ~ + ]-co-invariant in a Verma module is if.1e1 e1j where
e1 are the standardgeneratorsof ~ + - Thus H*([~ ~ ~~]; L~)can be

calculatedfrom the complex

p÷pm1 ~

whereP = if [e1 e1 I and m~is the numberof height i elementsin the Weyl

group. In particular, in1 = 1, andthe left arrow is the mapping(p1,..., p1) -÷

p1 + - . - +e~’~~p1,~’hencetheresult.

The BBG resolution of this proof allows to calculatehigher homology as

well. In particular,oneeasily gets

THEOREM 4.2. If rank g = 2, then

dimH([ ~ n~];L~) = (r + 1)
2(X

1 + 1)... (A1 + 1).

Moreover,asa if[e1, e2]-moduleI~Ir([11+, n+];.L) =

— if[e1, e2]/(e~ 1)(X, ) e~’~’~ ifr is even,

— if[ee]I(e~T+,+e~1+~) ifr isodd. •

The detailsof the proofare left to thereader.
In thegeneralcasewerestrictourselvesto

CONJECTURE4.3. In thesituationof Theorem4 1

dimH([n~, n+];L~)<cc
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foralir.

As to otherhighestweight irreduciblemodules,thereis a natural

CONJECTURE 4.4. If A is not a regular integral dominant weight then

dimH0([n~, n+];L~)=cc.
We can provethis Conjecturein two cases.In the caseof rank 2 the assertion

can be easily deducedfrom structuralresults of Malikov [9]. The secondcase
is when ~ is an extendedcurrent algebra,and A doesnotbelongto the imaginary

root hyperplane(see [10]). In this case the Verma module V~has some (at
most I) independentsingularvectors.If the maximal submoduleof V~is genera-
ted by thesevectors,then the proof is easy:thesevectorsbecome,afterreducing

modulo [ n~,u÷],monomialsof the form e~’ . . . e~
1, thesemonomialshave

a non-trivial common factor (if the weight is not integraldominant)andgenerate

a codiniensioninfinity ideal in if [e
1,... , e11. The trouble is that the singular

vectorsgenerateonly a submoduleM’ of the maximal submoduleM CV~,M/M’
has singular vectorsof its own, and so on. But all thesesecondary,ternary,

singularvectorshaveweightsof singularvectorsof V~and thereforecorre-

spondingmonomialsagain havethe samefactor.
Finally note that Remarkin the end of Section 2 remainsvalid only partially.

For example, let L be an irreducible heighestweight representationof the Kac-

Moody Lie algebra s 1. Form the category~ exactlyasin Remarkin Section
2. If L correspondsto an integral dominnat weight, then )f~ . But the

inversefails to be true: thereexists some L with ~*‘~ and L is not in-
tegral dominant. Suchrepresentationsplay an essentialrole in Polyakov’s quan-

tum gravity theory [8].

5. COMMENTS,CONJECTURES,ANDANNOUNCEMENTS

1 Let E be a smoothcompactcomplex curve andLie (E) be the Lie algebra
of meromorphicvector fields on E. Eachpoint y � E determinesa two-dimen-

sional cohomology class of Lie (E) with trivial coefficients. If a local coor-

dinatez is choosenin a neighbourhoodof y, z(y) = 0, then a~,is represented
by the cocycle

u1, U2 -÷Res0(f”g’—f’g”)dz/z

where u1, u2 E Lie(E), and u1 = f(z) d/dz, u2 = g(z) d/dz in a neighbourhood

ofy.
The point y E E definesthe adic topology in Lie (E) let 2~,(E) be the com-

pletion of Lie (E) with respectto this topology. The formula (2) definesa 2-
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-cocycle of the Lie algebra2’ (E). Let 2(E) = ji~,£~ (E). Here the sign H
denotesthe restricteddirect product, that is 2(E) is generatedby the sets { l~,
where l~, E 2’~(E)~ and only a finite numberof~l~}may have a pole (at y). It

is clear that w = ~, w~is a well defined cohomologyclassof the Lie algebra
2(E). The correspondingcentral extension of 2(E) is denoted by Vir (E).

The Lie algebra Lie (E) is naturally embeddedin 2 (E). The residueformula

implies that the restriction of the class w to Lie (E) vanishes.Thereforethe

embeddingLie (E) -+ 2(E) can be lifted to the embeddingLie (E) —* Vir (E).
There is a technically more convenientversion of this construction which

involves not all the points of E but a finite set if them. Let p1 , - . - p~be a set
of pointsof E and U = E — p1. . . . , p~.We assumeusuallythatE is an affine

manifold. Let Lie (U) be the subalgebraof Lie (E) consistingof those vector

fields which haveno polesin U. Put
2(p

1 p5) = 8

2Pj (E) and let Viz

- , p) be the centralextensionof the Lie algebra2(p
1, - . . ,p5) corre-

spondingto £he classw + . . - + w . It follows againfrom theresidueformula
P, Ps

that the restriction of the class + . . . + to the Lie algebraLie (U)

which is naturally embeddedin 2 . . - , p5) var~ishes.This meansthat there

is aninjection Lie (U) -÷ Viz (p1 p5).
The mathematicalapparatusof the conformal field theory is similar in some

respectsto the representationtheory of adelegroups.We give here someneces-
sarydefinitions.

Let for each point y E E a quasi-finiterepresentationMy of the Lie algebra
Viz (y) is given, such that “the central charge” c of MY is the samefor all y,
and that for all y but a finite numberof them MY = L0 c~ In the space ~YMy

spannedby the sets{uY E M~ y EM }with almost all uY beingvacuumvectors
in M~the Lie algebraVir (E) actsnaturally. It is natural to call a finite sum of

suchmodulesa quasi-finitemoduleover Vir (E).
Let M be a quasi-finite module over Vir (E). Evidently the spaceH0 (Lie (E);

M) is a direct analogfor the spaceof automorphicforms.

ThEOREM 5.1. For any quasi-finite module M over Vir (E) the spaceH0 (Lie

(E); M) is finite-dimensional-

This theoremis proved in the work of A. Beilinson and the first author[1].
Let p1, . . . ‘p be a set of distinct points ofE, U = E—{p1 p5}andN

be a quasi-finite representationof the Lie algebra Viz (p1, . . . , p5). We con-
struct a quasi-finite representationN of Lie (E) placing L0 C �t all points of E
different fromp1,..., p.

PROPOSITION5.2.H0q’Lte (U); N) = H0(Lie (E); N).
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This is a direct consequence of the Frobenius duality.

COROLLARY 5.3. The space H0(Lie(U);N) is finite-dimensional U

2. Let A~be the free Abelian group generatedby all irreduciblequasi-finite
Viz-moduleswith a given c. For a set of distinct points p1. . . - , p5 E E and

a set of irreduciblequasi-finiterepresentationsL1, . . - , L, considerthe natural
actionof Viz (p ,p5) in the spaceL = L1 0 L2 e.. . eL,. The correspon-
denceL1 L, —~ dim H0(Lie(U); L) definesa polylinear symmetricform

-+ ~ (it depends only on the genus g of the curve E).
Considerthe caseg = 0. The form p~definesa non-degeneratequadraticform

on A~. The natural base of A~consisting of irreducible representations is orto-

gonal with respect to this form. Weidentify AC with A~by means of this form
and convert p~into the homomorphismp : A~�‘A~ -+ A~.The homomorphism
p defines on A~ a commutativealgebra structure. (This assertion is actually

contained in [13]).

We shall call the triple of modulesLhC, Lh~c.LhC admissibleif c = c1,q~
h = h n’ h = hm~n h = h,, ,, and the triple (in, n), (m, n), (m , n ) is
admissiblein the senseof Section3.

THEOREM5.4. The number p~ (L,, ~ L,,~C L1,,,, ~ is equal to 1 if the triple

(Lh ,~ L,, ,C’ Lb ~ ~ is admissible and is equal to 0 otherwise

This is actually proved in Section 3. In fact, let the threechosenpoints in

if?’ = ifUoobe 0, 1, oo, and let U= if —{0, I). The main result of section 3

may be stated as follows. Let I h’ h” be the onedimensionalrepresentationof

with e~= h’, eg = h”. Then dimHO(
2’OO;LhC ~ 1h’,h”~= 1 if(LhC

L,, C’ ~ ~ is an admissibletriple and = 0 otherwise.Thenthe2
00-module

L,,~ ~ ~ inducetheLie(U)-moduleL,,CeVh.C0 VhC~whenceH0(
2

00

LhC ® ~ h,h~) = H0(Lie(U); L,,~0 V,,,11 e Vh~~C)It remainsto show that in
the last homology VhC and ~ may be replacedby Lh~C and L,, C~ But
there is an exact sequenceof the form Va C ~ C -+ Vh~C ~ Lb ~ -÷0,and

H0(Lie (U); L,,~e (VaC 0 V~C)® V,,~~C)=HO(~O;LhC~ a,h e
1p,h~))=

= 0 bevausenone of the triples (L,,~, LaC~Lh~~),(LhC, LpC~Lh~~C)is admis-

sible. ThereforeH
0(Lie (U); Lh,C ® ~ C ~ =HO(Lie(U);LhCeLh~C

and thesimilar argumentshold for ~ QED
The operators~ and p~determineall other ço

1’. Since the non-degenerate

scalarproduct is fixed on AC, theredefinedthe operatorA~-+ A~0 AC dual to
the multiplication. Denoteby I the elementof A~correspondingto the repre-
sentation LOC, and let S be the image of I under the composition of this
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co-multiplicationA~ _*ACa AC and the multiplication A ®A -÷A.

THEOREM5.5. The image of a1 ® - . . ® ~ under the mapping p~:A~-÷ Z is

equal to (1~ 5g a1a2, . . - , a), where ( , )is the scalar product in A~.

This statementis known to physicists for a long time; for a mathematical
proofof it see[1].

3. In this subsectionwe exhibit a mathematicalconstructoncorresponding
to the operationof the creation of particles in the conformalfied theory. Let
E be a complex curve, andp1. . . . ,p, q1, - . - , q be a set of distinct points
in E. Let M be a quasi-finiterepresentationof the Lie algebraViz (p1, - . - ~PS).

Assumealso that U = E — .~p1,. . . ,p } is an affine manifold.Denote by LieN(U)
the subalgebraof Lie (U) composedof field which haveN-fold zeroesin the

pointsq1, - . - , q~.Let MN = H0 (LieN(U); M). There is a natural mapping of
MN onto MN 1~Consider the correspondingsequenceof embeddings:M~-÷

M~-÷ M~-÷. . - The inductive limit M*(q1 q~)is a Viz (q1, - . . , q~)-mo-

dule in a natural sense. In faôt, if a vector field f E Lie (U — {q, q~}) has
in the points q1 ~ poles of order not greaterthan D, thenf definesa

mapping M1* — M1~D +1- Hence f induces an operator in the inductive limit
q~). We get an action in M*(q,, - . - , q~)of the completionof

the Lie algebraLie (E —{ p1, - . , p5, q1 ,.., q~})with respectto thetopology
generatedby the family of neighbourhoodsLieN(U). It is easyto seethat the

correspondingrepresentationwill be projective, so we obtain on M‘~q1 ,.., q~)
a structureof Viz (q1, - . - , q~)-module.This moduleis quasi-finite.

Notice that thereis a Lie (E — { p1 p5, q1 ,.., q~})-invariantform
MOM*(q1,. - . ,q7)-÷if.

We have constructed a contavariantfunctor from the categoryof representa-

tions of the Lie algebra Viz (p1 , - . - , p5) into the categoryof representations

of the Lie algebraViz (q,, - . - , q~).This gives usa mapping O~’~:e
5A~ —-0’A~

which dependson thegenusof the curveE.

THEOREM5.6. The scalar product on AC converts the mapping 0” into a form

-* Z, which coincides with ~.

This theoremallows us to find the moduleM*(q,, - . - , q~)if the decompo-
sition ofM into irreduciblecomponentsis known.

REMARK. The correspondenceM -÷ M* is understoodby physicistsas the crea-

tion of particles related to irreducible quasi-finite representations.Particles
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situatedin the points p1 p5 createparticlesin the pointsq,, - . - ~ Let
E = ifP

1, s = I, r = 2, p
1 = oo. q1 = 0, q2 = 1. Placeto oothe representation

L0~. Then L~C (0, 1) = 0(L,, ® L,,~) wheresummation is taken over all

irreduciblequasi-finiterepresentations.Thus L0 C (the “vacuum representation”)
createsfrom itself all otherquasi-finiterepresentationsfor the given c.

4. Let E = ~tP
1. M be a quasi-finite representationof the Lie algebraViz

(oo), q
1, - - - , q, be a set of distinct pointsof if = if P

1 — oo. Denote by 2(q,,

- . - , q,,) the subalgebraof the Lie algebraLie (U) consisting of vectorfields
vanishingat the pointsq

1, - . - , q, with the fizst derivative.

THEOREM5.7. There is a non-degenerate pairing between the spaces H, (
2’(q

1,

- . . , q~);M) andll’(2(q, ~---~ ~ ,q.,.)) induced by the natural
pairingMoM*(q,,. - - ,q~)-÷if.

In the case r = 2 this theoremmay be proved by the argumentsof Section
3. The proof in the generalcasewill be publishedelsewhere.

Now we show how to calculatethe cohomologyH* (2(q, q~);M*(q1,

- . - , q)). First of all we can decomposeM*(q,, - . - , q7) into irreduciblerepre-

sentationswith use of Theorem 5.6 Each of the irreducible componentshas
the form L, ® - . - ® L~where L. is an irreducible quasi-finiterepresentationof

theLie algebraViz (q1).

THEOREM5.8. H*(
2(q,, - . - , q,); L

1 0... 0L)~0 H*(21L)o if
x~1], where x1 aregenerators of degree 2.

The two factorsin the right hand part of the last formula are obtainedin the
following way. The central compositionseriesof the algebra2 (q1 q~)
defines on it a topology, and the completion with respectto this topology. is

isomorphic to 2~0 - - - 8 21 (r summands)=
2(q

1 q~).where 2’,
is the completion of 2’~with respectto topologydefinedby the centralcom-

position series. (The Lie algebra21 is nothing but the Lie algebra of formal
vector fields in the line vanishingat the points 0 with the first derivative).The
topological Lie algebra

2(q ~,-., q~) actscontinuouslyin the spaceL
1 ®

®Lr and hencethereis a mapping0: H~~’(2’(q ,,.. , q~);L, o - .. eLi) =

(2’~ Li) -÷ H*(2(q ~ q~); L1 ® . - .o Li). Onecanshowthat 0 is a mono-
morphism.From the otherhand,H*(

2(q,,. - .,q~);L, ®... OLr)isamOdule
over the algebraH*(2(q

1 q7); if ). The last cohomology is known (see
[II]). It is isomorphic to OFH*(21) ® if [x1, . . . , x,. ,]. Thegeneratorx1 is re-

presentedby the cocycle
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f —, g — -÷ I (f’g”—f”g’)ds
dz gz ,J

(wherez is the coordinatein (1 = if F
1—- = ). Thus if [x

1, . . - , .x~i] is a sub-

algebrain H* (2(q1, . . - , q~); if). ThespaceH~2(q1 q~); L1 o.. - OLr)

is a free . . - , Xr 1]-module,and the imageof 0 may be takenfor a system
of generators.

The family of Lie algebras
2(q

1 , . . . , q~)is a family of subalgebrasin Vir(oo).

Up to now weconsideronly the casewhenall the pointsq1,. - . ,q~ were distinct.
Whenthe point q1 tendsto q2, the Lie algebra2(q1 . . . ,q ) tendsto the Lie
algebra

2(q
1 q3, . . . , q,) consistingof vector fields which have four-fold

zero at the point q1 and two-fold zeroesin the point q3,.. - , q7.

THEOREM 5.9. dim H1(2(q1 q~); M) = dim H,(2(q1 q3, . . , q~); M)
for any i ~s 0 andany quasi-finite representation M of V*(oo). U

This will be provedelsewhere.
Now, if all the points q1,.. . , q~tend to one point then the Lie algebra

- q~)tend to a Lie algebraisomorphicto
22r. 1

CONJECTURE.dim H,(2
2~ 1 :M)= dim H.(2(q,,..., q~);M).

Thisis true forM = if(see[11]).

5. The most of the resultsof this sectionhaveanalogsfor affine Lie algebra.

In particular, the algebraA~is replaceswith the algebraBk generatedby irre-
ducible representationswith integral dominanthighestweights and with given
central chargek. In this final subsectionwe considerin somedetails the caseof

the Lie algebra sI ~. Under s 1 2 we understandhere the central extension

of the Lie algebra 512 0 if [t 1, ~ (the symbol if [t 1, t]] denotesLoran
seriesin t, which are finite in the negativedirectionand possiblyinfinite in the
positive direction). The central element of sI we denoteby K, its action

is representationwe usually denoteby k. In s I we considerthe parabolic
subalgebra~ = if. ~ sI 2 ~ [t]]. Let ~ be a finite-dimensionalirreducible

representationof sl 2~Denote by Vk, where k E if , the representationof
sI inducedby the representationof P in the spaceir: Kavts by multiplying

with k, and ~I 2 ® ~ lEt]] acts through the projection SI2 8 if [t]] ~ 2

(t -÷ 0). The representationVk is called a (generalized)Verma module. Irre-
ducible representationsLak of the Lie algebra s1 with integral dominant
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highestweight are parametrizedby pairs (ir, k), where k is a non-negative integer,
and ir is a finite-dimensional irreducible representation of s 12 with the highest
weight being less or equal to k. Clearly, Lk is a quotient of Vk. There exists

a resolution of L,~k composedof generalized Verma modules; for example,
the resolution of L,, k’ whereir0 is the one-dimensionaltrivial representation,
has the form: 0 -~- £ ~- V ÷- V ~- V +-... whereir - is the

ir0,k ITG,k n ,k ir2,k ‘ 2~
representation with the highest weight 2i (i~+ 2), and ir21 1 is the representation
with the highestweight 2i(k + 2) — 2. The resolutionof anarbitraryL,~kinvol-

ves the modulesVS,(,~,k),kwheres1(ir,k) is the representationof 2 with the
highest weight 2i(k + 2) — 1 + (— l)’(l + x), where x is the highest weight

of ir.
The Lie algebra si contains a subalgebra ~ 2 0 t - iI~[t]J. The coho-

mologyH*( 512 ot- - U[t]];L k)is an s12-module, for 512 is the quotient
of the normalizerof 512 ot - ff[t]] in ~1; over sI 2 0 t -

PROPOSITION. ff( sI 2 ® - Ct [t]]; Lk) is an irreducible s12-module iso-
morphic to s~(ir, k).

Proof: consider the resolution of L~kconstructedabove.

Letp1,. ..,p bendistinctpointsofifP’, U=ffP’ —~p1,---,p~} sI2(U)
be the Lie algebraof rational currents if F’ —, 512 without poles in U. Con-
sider the completionof the Lie algebra s1 2~U)with respectto theadic topology

defined by the set p1, . . - , p,~. The completion ~‘2 (U) is isomorphic to the
direct sum of n copiesof the Lie algebra sI 2 0 ff[ t

1, t]1. Each of the points
defined a 2-cocycleof the Lie algebra 11

2(U), the sum of thesecocycles
definesthe central extensionof s12(U)which is denotedby sl ~(p, ,.., p,).

TheLie algebra s12(U)is embeddedinto sI (p1, - . -

Fix an integer k. Let L~1,k’ - - - ~ be a set of irreduciblerepresentations
of the Lie algebra s1. The tensorproductL = L~ ,k 0 L e... oL~~kis a mo-
dule over the Lie algebra sI (p1,..., p~)and henceover the Lie algebra

5l2(U).

The proofsof the following resultswill be publishedelsewhere.

THEOREM 5.10. The space H0 (sI 2(U); L) is finite-dimensional, and its dimen-
sion is equal to ~ (~1)i dim Horn s12(ir1, ~10 0 . . - 0 va);hereir1 arethe

representations involved in the resolution of L k — see above. The space H*
( 512(U);L*)isisornorphictoRO ( sI2(U);L*)°oH~1 512(U);ff).

Notice that H~ s12(U); Cl~) H*( 512; if) off [y1, - . . , ~ where
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y1 are generators of degree 2. The similar statement is valid for currents on any
complex curve. (See [3]).

Let q1, - . - , q,, be a set of distinct and different from oc points of if F’ , U=

=P
1 —~ and sI

2(L~ q1, .. - ,q~)bethesubalgebraof s12(U)= 512 ®UTt]
consisting of currents vanishing at the points q,, - . - , q,~. The Lie algebra sI 2

(U, q1, - - - , q,,) is embeddedinto si (oo). Therefore the sI ~-moduIeLk

is an 512 (U, q, q~)-module as well. Similarly s12(U, q,, - - - , q,~) is
embedded into sI ~(q1 q~).

THEOREM 5.11. The space H. ( s12(U, q,, - . . , qfl);L~) is dual to the space

0 [H’( 512(U, q1 - . . q~);L k - - - oL
7Tj...fly~ fl

OH°( s12(ffP
1 —oo, q,,. . - , qfl);L~ e L,~ ~ - . - oL~k)

In this statement Lflk is supposed to be situated at 00 and L~.k is supposed
to be situated at the point ps.’.

The space H*( s1
2(U, q1, - . - , q,~);L o - . - OLWk) is calculated with

use of the following theorem.

THEOREM5.12. H*( 2(U, q1., - . - ,q~);L k ~ oL

~®1fi*( 512 0t.ff[t];L~ k)®fftxl ,...,

where

deg x.=2. U
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